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We report a study of the elast ic-aftereffect  properties of a medium 
whose shear deformations are described by the modified Voigt, Max- 
well, and standard linear-body models in which the differentiation 
operators are replaced by fractional differentiation operators. The pos- 
sibility of applying this type of description to various real materials is 
discussed. 

Simple theological models (Voigt, Maxwell, and standard linear- 
body models) are widely used for the qualitative description of the 
elast ic-aftereffect  properties of materials in the linear region. These 
models are simple and readily interpreted but have the important dis- 
advantage that they do not take into account the spread of the re- 
laxation spectra which usually occurs for real materials. The relaxation 
spectrum of a particular material  can be taken into account in the 
simpler theological models if we modify somewhat the viscous el- 
ement  in the theological scheme. To achieve this it is sufficient to 
modify the Newtonian viscosity law 

s~k 2~Dei~ (D 
0 

= =- ~ - E )  (1) 

by introducing the replacement D --~ DY, where Sik and eik are the 
deviators of the stress deformation tensors, respectively, /J is the shear 
modulus, and v is the relaxation time. 

We shall restrict our attention to shear deformation, and write out 
Hooke's law for a viscoelastic medium in the form 

si~ = 2~ (t)*eik, Si~ = 2 M E ~  , (2) 

�9 where the asterisk represents convolution in the segment (0, t) and Sik 
denotes the one-sided Laplace transform of the function Sik, and 
similarly for the other functions. The replacement of the operators D 
by the fractional differentiation operators means that we are trans- 
forming in the image space from the factors pr  to (pr)Y, where 0 < 
< y -< 1. Bearing this in mind, we obtain the following expression for 
the elastic moduli M(p) for the Voigt, Maxwell, and standard linear- 
body modeIs: 

M = go [1 § (p~)v],  

M = ,  l + ( p , ~ ) _  ~ ,. M = l x o i @ ( p , a ) .  r . (3) 

Series-expanding the fractions for M and 1 /M in powers of (pr)-Y, 
and remembering that 

co  

(-- Ip  (p~)-~(~+~) (4) 
n ~ o  

is the transform of 

o0  

t wY 
~ 0  

we obtain the following results: 
Voigt model 

(t) = N0 [6 (t) + ~ 6  (Y) (t)l, 

(--t)n (t / .~)'/(n+l)-I ------ O.~ (t, T), 
r iT (n + l)] 

Maxwell model 

(t) = !% [8 (t) - -  3.~ (t, "L)I, 

t _ I [8(t)_~ (t / '~s) "~-1] 
(t) ~o~ % r  (,~) ' 

(5) 

standard linear-body model 

(0 = ~oo8 (t) - -  (~% - -  ~o) 8v (t, ~ )  

t t ( t  t ) 9 , ( t , , a ) ,  (6) 
~(t)  = ~ 8 ( t ) +  t,o r% 

where Oy(t, T) is the fractional exponential function introduced by 
Rabomov [1], 5(t) is the Dirac delta function, and 6(Y)(t) is the de- 
rivative of this function of order y. In the expressions given by (6) we 
have used the relation ~o/go = (vo / r s )  y, The Rabotnov operators have 
been used to solve a number of elast lc-aftereffect  problems for visco- 
elastic bodies [2, 3]. However, it is possible to use simpler operators 
to describe stress relaxation within the framework of the modified 
Voigt model. This is also the case for creep treated in terms of the 
modified Maxwell model. 

- . .C/  

We can readily obtain from Eq. (37 or (6) expression describing 
the reaction of the system to an instantaneous deformation g ik =  
-- eik%(t ) (stress relaxation) and an instantaneous stress~ik=Sik~ 
(creep): 

Voigt model 

(t / '%)-" ] ,  i 

Maxwell model 

si~: = 2'ooei~ I t - -  (1)Y ( ~ - )  ] ,  

-- t s. t +  . , 
ei~ --  ~ ~ r (1 + T) (7) 

standard linear-body model 

si~ = 2ei~ ~oo - -  (~co - -  l~0) (9 v 

ei~ = --ff-s~ + ~o 

0o  

When T = 1 the Rabotnov function degenerates to the ex-  
ponential function 31(t , r) = r -% - t / r ,  and ~ / t / r )  = 1 -- e ' t / r ,  and 
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the corresponding equations describe an exponential variation of the 
functions. The creep of a Maxwell medium for ~ = 1 is a linear 
function of time: 

t V 1 . t 

~ = ~ ~ '  L + ~-,J (9) 

For the Voigt model with y = 1, stress relaxation will be absent, 
which follows from the relation 

s~ = 21~o [e~ + qd'ro8 (t)], (~o) 

where we have used the representation 

6 (t) = lira [t 'P (t - -  ~-)]-~ . (11) 

In the case of uniaxial compression or extension we can obtain 
the following expressions for the kernels of the integral operators 
for the Young moduli if we assume that the kernels of the operators for 
the shear modulus are described by Eq. (6), while volume deformations 
do not relax and are described by a constant bulk modulus K: 

Voigt model 

E (t) = Go8 (0 -- (Eo~ -- Eo) 9~ (t, ~), (~ < ~ a ) ,  

<(,  

Eoo = 9K, E0 = 9Kl~0 InK + ~o1-1, ( ~  / %)~ = Eo / E~o, 

Maxwell model 

E (t) = Go [8 (t) - -  9~ (t, %)1, (E~ < 3~ ,  ~ < ~o), 

~ ( t ) = ~ - ~  8 ( t ) + ~ ( ~ )  ( t / ~ j - ~  , 

E ~  = 9 ~  [3K + ~o~1% ( ~  / %)'~ = Zoo / 3 ~  , 

standard linear-body model 

E (t) = Eco8 (t) - -  (Ec~ -- Eo) ,9.~ (t, T), 

(~o > eo, 'h < ~ < %), 

/ t  t 
-g2J /G  It, "%) . 

9K~co 9K~o 
Ec~=3K+l~co"  E o =  3 K + ~ o  ' 

(12) - 

where E~ and E 0 are the unrelaxed and relaxed values of the Young 
modulus. 

Comparison of Eqs. (6) and (12) shows that if the shear deformation 
is described by the ~ operators, the uniaxial compressions or extensions 
are also described by ~ operators. In the MaxweI1 mode1 there is a 
replacement of re by to, while for the standard linear-body the re- 
placement v a--~ T occurs only for the direct operator E:' since the re- 
ciprocai operator l/E* is characterized by the relaxation time vo, as 
before. We note that for the Voigt model the 8 operator is described 
by the direct and the reciprocal Young modulus operators. It is only 
the operator l/E* for the Maxwell model that is expressed in terms of 
the fractional differentiation operator, as before. 

Let us now discuss the dynamic characteristics of the above models 
under harmonic shear deformation. They can be deduced by introducing 
the replacement p--+ ko in the expressions given by Eq. (3). Whenthis 
is done, and the real imaginary parts of the complex moduli of elas- 
ticity and compliance are separated, we obtain the parametric form 
of the equations relating the real and imaginary parts of the functions. 
The corresponding graphs for all the models are shown in the figure (a 
represents Voigt, b represents Maxwell, and e represents standard lin- 
ear-body). Arrows indicate the direction in which w'r increases. It is 

clear from the figure that the fractionaI-exponential kernels cor- 
respond to circular arcs with a central angle ~,, while fractional de- 

rivatives correspond to straight lines at an angle ~ry/2 to the real axis. 

In spite of the fact that in all three models the elastic-aftereffect 
properties of a material can be described by the 0 function (in the first 
case for creep, in the second for stress relaxation, and in the last for 
both cases), the range of validity of the models is quite different in 
each case. 

The most general model is the standard linear body characterized 

by finite values of the relaxed and unrelaxed elasticity and compliance 

moduli. In the Voigt model p~o--~- ~, while in the Maxwell model 

~i...~ r162 Materials which show an unrestricted increase in the elastic 
modulus with increasing frequency do not appear to exist. Therefore, 
the modified Voigt model can be used only as a very rough approx- 
imation to estimate the low-frequency asymptotic behaviour of certain 

materials. 
The modified Maxwell model assumes the existence of flow. The 

usual Maxwell model has been used for the qualitative description of 
the internal friction of metals [4, 5] and the relaxation of linear poly- 
mers in the transition region from the highly elastic to the viscous- 
flow state [6]. A disadvantage of the ordinary Maxwell model is that 
it involves a single relaxation time, while real solids have a broad 
relaxation spectrum. Therefore, ff the existence of the relaxation 
spectrum in the region under consideration is important, it can be ap- 
proximately taken into account by the modified Maxwell model  This 
approach was used to describe the dislocation background in the inter- 
nal friction of metals [7,8]. Apparently, it can also be used for the 
description of the elastico-viscous behavior of some polymers. It fol- 
lows from Eq. (3) that the frequency dependence of the dynamic vis- 
cosity, ReTl(~o) ~ a~-~-Y, occurs for strongly crystallized linear poly- 
ethylene with a density of O. 965 g /cm s in the regionwheretheviscnsity 
changes from 10 t2 to 10" 2 poise [9]. 

The modified standard linear-body model can be used to describe 
relaxation phenomena in polymers in the region of the glassy state 
when relaxation is due to reorientation in the external force field of the 
side chains of molecules or finer kinetic units. The corresponding 
maxima in the mechanical Ioss factor tg~ are well defined and usually 
have a symmetric bell-shaped form as a function of the logarithm of 
the frequency. It must be remembered, however, that they are ac- 
companied by a relatively high background, tgr N 10" s which is al- 
most independent of frequency [9]. 

The most interesting region from the point of view of the eiastic- 
aftereffect is the a-relaxation region of poIymers, which is connected 
with the conformal motion of the main chain of molecules, and is 
characterized by a relatively broad relaxation spectrum. However, the 
distribution function for the logarithms of the relaxation times is es- 
sentially asymmetric in this region, and approaches a straight line with 
a slope of -1 /2 .  Since as soon as a maximum is reached the distribution 
function does not tend to fall to a level characterized by large v, it 
may not be adequately approximated by a symmetric distribution 
function such as the ~ function [10]. Therefore, the description of the 
elastic aftereffect in polymers in this region in terms of the fractional 
exponential functions may frequently be only qualitatively correct as 
far as theological properties are concerned. For metals, in which the 
relaxation peaks corresponding to different mechanisms are well 
separated, the use of the modified standard linear-body model is re- 
stricted only by the requirement that the system be linear. 
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